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Background
▶ A range of previous studies have probed the representations

of self-supervised acoustic models for phonetic and
phonological information, suggesting such information is
encoded in these models [3, 2, 12, 11]

▶ Can models trained on articulatory data also derive
representations that encode phonological information?

Articulatory representation learning
▶ A number of studies have applied self-supervised learning

approaches to articulatory data, termed articulatory
representation learning [9, 4, 10]

▶ No previous study has probed the extent to which these
representations may capture meaningful phonological
distinctions

This study: trains a predictive learning model on roughly one
hour of articulatory data from a single speaker collected via real-
time MRI and probes the learned representations of this model for
crucial phonological distinctions

Method
Model: Contrastive predictive coding (CPC) [13];
convolution-based encoder (1D conv x3) and LSTM-based
autoregressive module (LSTM x3)

Analysis:

1. Multinomial logistic regression probes – phoneme
classification

2. ABX [15, 5] probes – constriction degree (CD) and
constriction location (CL); raw latents vs. k-means codes
(k = 100)

Dataset: single speaker real-time MRI speech corpus; ∼1
hour of speech; combination of read and spontaneous speech;
midsagittal orientation, 99 frames/sec

Preprocessing: video chunked up to 1s in length using
pretrained VAD [1] and hand-annotated phoneme alignment;
all video frames were z-scored and rescaled to 128 × 128

Implementation details:
Parameter Value
Learning rate 1e-3
Batch size 32
Conv dims (2048, 1024, 521)
Conv kernels (1, 3, 3)
LSTM dim 512
Prediction horizon 12

Example MRI frame from the data
set.

Results
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Both the raw latents (top) and k-means codes
(bottom) perform well above chance in phoneme
classification. The k-means codes show generally
better performance across the layers.
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While the latents show poor performance in ABX
discrimination of CD/CL distinctions (top), the
k-means codes score near ceiling across all layers
(bottom).
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As expected, consonant errors are most common
among coronals in phoneme classification (top).
Dental, alveolar, and post-alveolar CLs were most
often confused in the CL ABX tests (bottom).

Findings
1. While the latents perform decently in phoneme

classification, their performance is poor in making
CD/CL distinctions

2. Only once the latent space is discretized via
k-means do the CD/CL probes perform well

3. Representations from the convolution-based
encoder generally outperformed those of the
LSTM-based autoregressive module

4. As expected, distinctions among coronal
consonants are the least well-separated in the
model’s representations

Interpretation
1. The raw latents likely encode more phonetic

information and are susceptible to contextual
effects, while the discretized space has less noise

2. While the discretized CD/CL probes score near
ceiling, differences unrelated to local CD/CL may
explain this performance, e.g. different lingual
postures in /s/ and /t/

3. Confusion between labials and velars may be due
to CV coarticulation - the model encodes all
dorsal constrictions (C or V) similarly

Future Directions
▶ Future work could try other forms of predictive

learning, e.g. masked prediction

▶ Given the evidence for the role of sensory
prediction in the control of speech production
[8, 7, 6, 14], multimodal models may be more
insightful

▶ Extending this work to multi-speaker corpora
could allow for more robust representation
learning
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